Table 3-1. Specifications

FREQUENCY

Range:

Sine: 1 μHz to 20,999 999 999 MHz Square: 1 μHz to 10,999 999 999 MHz Triangle/Ramps: 1 μHz to 10,999 999 999 kHz Resolution:

 $1 \mu Hz$, < 100 kHz

1 mHz ≥ 100 kHz (1 μ Hz available, not displayed)

Accuracy:

 $\pm 5 \times 10^{-6}$ of selected value, 20°C to 30°C, at time of calibration ,(Standard Instrument)

Stability:

±5×10-6/year, 20°C to 30°C, standard (See also option 001, high stability frequency reference)

Warm-up Time:

20 minutes to within specified accuracy.

MAIN SIGNAL OUTPUT

(all waveforms)

Impedance:

 $50\Omega \pm 1\Omega$, 0-10 kHz

Return Loss:

> 20 dB, 10 kHz to 20 MHz, except > 10 dB for > 3 V, 5 MHz to 20 MHz

Connector:

BNC; switchable to front or rear panel, non-switchable with option 002 except by internal cable change.

Floating.

Output may be floated up to 42V peak (AC + DC)

AMPLITUDE (all waveforms)

Resolution:

0.03% of full range or 0.01 dB (4 digits). Range:

1 mV to 10 Vp-p in 8 amplitude ranges, 1-3-10 sequence. Ranges are 1 mV-2.999 mV, 3 mV-9.999 mV, 10 mV-29.99 mV, 30 mV-99.99 mV, 1 V- 2999 V, .3 V-.9999 V, 1V-2.999 V, 3 V-10V, (without DC offset).

Function	peak to peak	rms	dBm(50Ω)
Sine min. max.	1.000 mV 10.00 V	0.354 mV 3.536 V	-56.02 +23.98
Square min. max.	1.000 mV 10.00 V	0.500 mV 5.000 V	-53.01 +26.99
Triangle/ Ramps min. max.	1.000 mV 10.00 V	0.289 mV 2.887 V	-57.78 +22.22

Accuracy: (with 0 Vdc offset)

Sine

	.001 Hz	100 kHz	: 10 MF	łz 20 MHz
+ 23.98 dBm + 13.52 dBm	±.1d	В	+ .4 d	B
- 16.02 dBm - 56.02 dBm	±.2 d	В	± .6 dB	± .6 dB
- 30.02 apm	L			± .9 dB

Square Wave:

	.001 Hz	100 kHz	10 MHz
10 Vp-p 3 Vp-p	± 1.0%	6 ±1	1.1%
1mVp-p	± 2.2%	±1	3.6%

Triangle:

	.001 Hz	2 kHz	10 kF
10 Vp-р 3 Vp-р	± 1	.5% ±	5.0%
1mVp-p	± 2	.7% ±6	5.2%

Ramps:

	00 <u>1 Hz</u> 500	kHz 10 kH
10 Vp-p 3 Vp-p	± 1.5%	± 10%
1mVp-p	±2.7%	± 11.2%

With DC offset, increase all sinewave tolerances by .2 dB and all function tolerances by 2%.

SINEWAVE SPECTRAL PURITY

Phase Noise:

 60 dBc for a 30 kHz band centered on a 20 MHz carrier (excluding ±1 Hz about the carrier) with option 001 installed.
Spurious:

All non-harmonically related output signals will be more than 70 dB below the carrier (– 60 dBc with DC offset), or less than – 90 dBm, whichever is greater.

WAVEFORM CHARACTERISTICS

Sinewave Harmonic Distortion:

Harmonically related signals will be less than the following levels relative to the fundamental:

Frequency Range	Harmonic Level
.1 Hz to 50 kHz	- 65 dBc
50 kHz to 200 kHz	-60 dBc
200 kHz to 2 MHz	- 40dBc
2 MHz to 15 MHz	- 30 dBc
15 MHz to 20 MHz	25 dBc

Squarewave Characteristics:

Rise/fall time: ≤20 ns 10% to 90%, at full output.

Overshoot: ≤5% of peak to peak amplitude, at full output.at 1MHz.

Settling time: $<1\mu s$ to settle to within .05% of final value, tested at full output with no load, 10 Hz to 500 kHz.

Symmetry: $\leq .02\%$ of period +3 ns.

Triangle/Ramp Characteristics:

Triangle/ramp linearity (10% to 90%, 10 kHz): ± .05% of full p-p output for each range.

Ramp retrace time: $\leq 3 \mu s$, 90% to 10%. Period variation for alternate ramp cycles: $\leq 1\%$ of period.

DC OFFSET

Range:

DC only (no AC signal): 0 to ±5.0 V/50Ω DC + AC: Maximum DC offset ±4.5 V on highest range; decreasing to ±4.5 mV on lowest range.

Resolution: 4 digits

Accuracy:

DC only: $\pm .02$ mV to ± 20 mV, depends on offset chosen.

DC + AC, to 1 MHz: ± .06 mV to ± 60 mV, depends on AC output level, ± .2 mV to ± 120 mV for ramps to 10 kHz.

DC + AC, 1 MHz to 20 MHz: ±15 mV to ±150 mV, depends on AC output level.

Table 3-1. Specifications (Cont'd)

PHASE OFFSET

±719.9° with respect to arbitrary starting phase, or assigned zero phase.

Resolution: 0.1°

Increment Accuracy: ±0.2° Stability: ±1.0 degree of phase/°C

SINEWAVE AMPLITUDE MODULATION

Modulation Depth (at full output for each

0-100%

Modulation Frequency Range:

DC to 400 kHz (0-21 MHz carrier frequency)

Envelope Distortion:

- 30 dB to 80% modulation at 1 kHz,

0 VDC offset

Sensitivity:

±5 V peak for 100% modulation

Input Impedance: $10 \text{ k}\Omega$ Connector: Rear panel BNC

PHASE MODULATION

Sine Function Range:

± 850°, ±5V input

Sine Function-Linearity:

±0.5%, best fit straight line

Squarewave Range: ±425° Triangle Range: ±42.5°

Positive and Negative Ramps:

Modulation Frequency Range:

DC -5 kHz

Input Impedance: >40 k Ω Connector: Rear panel BNC

FREQUENCY SWEEP

Sweep Time:

Linear: 0.01s to 1000s

Logarithmic: 1s to

1000s single, 0.1s to 1000s continuous

Maximum Sweep Width:

Full frequency range of the main signal output for the waveform in use except minimum log start frequency is 1 Hz.

Minimum Sweep Width:

	Minimum sweep width	
	Sweep time Sweep time	
Function	.01 sec.	99.9 sec.
Sine:	.1 mHz	999.9 mHz
Square:	.05 mHz	499.5 mHz
Triangle:	.005 mHz	49.95 mHz
Ramps:	.01 mHz	99.99 mHz

Minimum log sweep width is I decade.

Phase Continuity:

Sweep is phase continuous over the full frequency range of the main output.

Discrete Sweep:

Number of segments: 100 maximum (Start and stop frequencies settable for each segment)

Time/segment: 0.01s to 1000s, 0.01s resolution

MODULATION SOURCE:

Frequency Range: Sine 0.1 Hz-10 kHz,

Square 0.1 Hz-2 kHz

Frequency Resolution: 2 digits Frequency Accuracy: Typically 0.1%

(Sinewave)

loads

Amplitude Range: 0.1 Vp-p to 12 Vp-p

Amplitude Resolution: 0.1 V

Amplitude Accuracy: Typically ± 200 mV Impedance: Designed to drive ≥ 10 kOhm

Sinewave Purity: Typically better than - 34 dBc

Standard Waveforms: Sine, Square

Arbitrary Waveforms: Vertical resolution 256 points, horizontal resolution 4096 points, 300,000 samples/sec, 10 kHz

maximum.

Output Location: Rear Panel BNC

AUXILIARY OUTPUTS

Auxiliary Frequency Output:

Frequency Range: 21 MHz to 60.999 999 999

MHz, underrange coverage to

19.000 000 001 MHz, frequency selection

from front panel.

Amplitude: 0 dBm; output impedance: 50Ω

Connector: Rear panel BNC

Sync Output:

Square wave with $V_{high} \ge 1.2 \text{ V}$, $V_{low} \le 0.2$ V into 50Ω . Frequency range is the same as the main signal output for front panel sync and DC-60 MHz for rear panel sync.

Output impedance: 500

Connector: BNC front and rear panels.

X-Axis Drive:

(0-100s sweeps only)

0 to +10 Vdc linear ramp proportional to sweep frequency; linearity, 10-90%,

± .1% of final value (applies for sweep widths which are integer multiples of the minimum sweep width).

Connector: Rear panel BNC.

Sweep Marker Output:

High to low TTL compatible voltage transition at keyboard selected marker

frequency. (Linear sweep only.)

Connector: Rear panel BNC.

Z-Axis Blank Output:

TTL compatible voltage levels capable of sinking current from a positive source.

Current 200 mA, voltage 45V, power

dissipation 1 watt maximum.

1MHz Reference Output:

0 dBm output for phase-locking additional instruments to the HP 3325B.

Connector: Rear panel BNC.

10 MHz Oven Output:

0 dBm internal high stability frequency reference output for phase-locking HP 3325B or other instruments (option 001 only).

Connector: Rear panel BNC.

Table 3-1. Specifications (Cont'd)

AUXILIARY INPUTS

Reference Input:

For phase-locking HP 3325B to an external frequency reference. Signal from 0 dBm to + 20 dBm into 50Ω. Reference signal must be a subharmonic of 10 MHz from 1 MHz to 10 MHz.

Connector: Rear panel BNC. With option 001 this input may be jumpered to the 10 MHz reference output.

Amplitude Modulation Input: See modulation specifications. Phase Modulation Input: See modulation specifications.

REMOTE CONTROL

Frequency Switching Time (to within 1 Hz exclusive of programming time:

≤10 ms for 100 kHz step; ≤25 msec for 1MHz step; ≤70 msec for 20 MHz step. Phase Switching Time (to within 90° of phase lock exclusive of programming time: ≤15 msec.

Amplitude Switching Time (to within amplitude specifications, exclusive of programming time): < 30 ms. HP-IB Interface Functions:

SH1, AH1, T6, L3, SR1, RL1, PP0, DC1, DT1, C0, E1

RS-232 Interface:

Subset of ANSI/EIA-232D-1986, CCITT V.24

Type: DTE, 25 pin female "D" connector Baud Rate: 300-4800

OPTION OUTHIGH STABILITY FREQUENCY REFERENCE

Aging Rate:

 $\pm 5 \times 10^{-8}$ /week, after 72 hours continuous operation; $\pm 1 \times 10^{-7}$ mo., after 15 days continuous operation.

Warm-up time:

Reference will be within $\pm 1 \times 10^{-7}$ of final value 15 minutes after turn-on at 25°C for an off time of less than 24 hours.

OPTION 002 HIGH VOLTAGE OUTPUT Frequency Range: 1 µHz to 1 MHz Amplitude:

Range: 4.00 mV to 40.00 Vp-p in 8 ranges, 4-12-40 sequence, into 500Ω < 500 pF load. Ranges are four times the standard

instrument ranges, without DC offset. Accuracy: ±2% of full output for each range at 2 kHz.

Flatness: ±10% relative to programmed amplitude.

Sinewave Distortion:

Harmonically related signals will be less than the following levels (relative to the fundamental full output into 500Ω , load):

10 Hz-50 kHz: -65 dB 50 kHz-200 kHz: -60 dB 200 kHz-1 MHz: -40 dB

Square Wave Rise/Fall Time:

 \pm 125 ns, 10% to 90% at full output, with 5000, 500 pF load.

Square Wave Overshoot:

 $\pm 10\%$ of peak to peak amplitude with 500Ω , 500 pF load.

Output Impedance:

 $< 2\Omega$ at DC, $< 10\Omega$ at 1 MHz

DC Offset:

Range: 4 times the specified range of the standard instrument.

Accuracy: ±(1% of full output for each range + 25 mV).

Muximum Output Current:

± 20 mA peak

GENERAL

Operating Environment:

Temperature: 0°C to 55° C

Relative Humidity: 95%, 0°C to 40°C

Altitude: \leq 15,000 ft.

Power:

100/120/220/240 V, +5%, −10%; 48 to 66 Hz; 90 VA, 120 VA with all options

Weight:

9 kg (20 lbs) net; 14.5 kg (32 lbs) shipping *Dimensions:*

133.4 mm high \times 425.5 mm wide \times 498.5 mm deep (5¼" H \times 16¾" W \times 19¾" D)